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The added-mass coefficients of a torus 
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S U M M A R Y  
The generalised added-mass coefficients of a torus in translatory and rotational motion in an inviscid incompressible 
fluid are obtained via an exact solution of Laplace's equation in toroidal coordinates. Of the six possible independent 
coefficients three are found to have nonzero, finite and separate values, due to symmetry. These are translation in, and 
perpendicular to the ring plane and rotation around a diameter. For translation normal to the ring plane, the added 
mass is somewhat larger than the mass of the torus of equal density. This coefficient tends to the torus mass for slender 
tori (large ratio of ring to core diameters). For translation in the ring plane the added mass tends to one half the torus 
mass, and for rotation the added inertia is approximately the torus moment of inertia for such slender tori. Simple 
relations for the added-mass coefficients as a function of the diameter ratio for general tori are also presented. 

1. Introduction 

Study of the motion of toroidal shapes in a fluid medium is of interest from both the 
fundamental and practical points of view. The torus is one of the most elementary non-simply 
connected bodies and as such, poses some new mathematical requirements. Physically the 
torus is a close approximation of the shape of the fluid body attached to a vortex ring resulting, 
for example, from the entrance of a fluid jet of finite duration into a fluid medium of comparable 
density. Such toroidal shapes have been observed in intermittent operation of smokestacks [ 1 ], 
when liquid drops enter a container of the same liquid [2], when shock waves pass through a 
medium with a sudden change in density [3] and in superfluids [4]. 

For this reason it is important to have an estimate of the added mass coefficients of toroidal 
forms in analysing various modes of vortex-ring motion. The added-mass coefficients may be 
considered as a measure of the fluid energy excited by the motion of the body in an otherwise 
quiescent fluid medium and is a fundamental parameter in the analysis of the kinematics of 
Rankine bodies. 

While discussions ofvortex-ringmotions have been available for over acentury starting from 
Helmholtz's classical work, the added mass of the torus, to the best knowledge of the authors, 
has not yet been calculated, except for an asymptotic analysis for tori ofverylarge ratios of ring- 
to-core radii, presented recently by Wu and Yates [12]. The purpose of the present paper is to 
establish the values of the added-mass coefficient in translational and rotational motion for a 
general torus. 

The analysis is carried out by assuming the fluid to be inviscid and incompressible, and in 
terms of toroidal harmonics, first introduced by Hicks [5] and Dyson [6]. The three distinct 
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added-mass coefficients of the torus corresponding to axial and transverse linear motions and 
rotation about the transverse axis are computed from the expressions of the kinetic energy. The 
three added mass coefficients are found from the associated three Kirchhoff's velocity 
potentials and use is made of the orthogonality properties of the toroidal harmonics. For  the 
axisymmetric case, an alternative derivation for the corresponding added mass which is based 
on the employment of a stream function is also given. The solution for the added-mass 

coefficients is obtained in the form of a Neumann series with coefficients obtained by the 
solution of a tri-diagonal matrix. Numerical results for the three added masses are also 
presented for various ring geometries and some simple practical expressions for these 
coefficients in terms of the ring and core radii are also given. 

2. Toroidal coordinates and boundary conditions 

Let the origin of a Cartesian coordinate system (x, y, z) be placed at the center ofatorus of radius 
d and core radius b such that the x axis coincides With the axis of symmetry. When dealing with 
toroidal geometries it is more convenient to employ a toroidal orthogonal coordinate system 
(z, fl, y) that is related to the Cartesian system by the following transformation [7]: 

a sin fl a sinh z cos ? a sinh r sin 7 
x =  • = ; z =  (I) 

cosh T - cos f l '  Y cosh z - cos fl cosh z - cos f l '  

where 0 < r < 0% - n < fl < n, 0 < ), < 2n, and a is a characteristic parameter. The metrics of 
the above transformation are given by 

a 2 a 2 s i n h  2 

gPa = g,* (cosh z - cos ~ 2 ,  g~r (cosh ~ - cos fl)2, (2) 

and the geometrical parameters of the torus are (Fig. 1) 

d = a coth z o, b = a cosech z 0, V r = 2nZa 3 coth r 0 cosech z 30, (3) 

where r = z o = const, is the equation of the toroidal surface and V r denotes the volume of the 

torus. 
In the present analysis we assumed the fluid medium to be inviscid and incompressible which 

implies the existence of a velocity-potential function governed by the Laplace equation. A 
normal separable solution of the Laplace equation in toroidal coordinates which vanishes at 

infinity (exterior harmonics) is given by 

oo m sin (nil) sin (mT) 
• (~, fl, y) = x//2 cosh z - 2 cos fl ~ ~ P,_l/2(cosh z) cos(n~ cos(my)" (4) 

n = O  m = O  

Similarly, a normal harmonic solution which is regular at the origin (interior harmonic) may be 
written as 

~o ~o sin (nil) sin(my) 
q~(r, fl, y) = x/2 cosh z - 2 c o s t  E E Q~-1/2(c osh Z) cos(nfl ) cos(my)' (5) 

n = O  ra=O 
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j3=const. 

1: =cons t .  

Figure 1. Toroidal coordinate system. 

where pm and Q~ denote the Legendre functions of first and second kind respectively. n -  1 / 2  - 1 / 2  

Itisfurtherassumedthatthetorusistranslatingwithvelocity V( V1, Vz, V3)androtatingwith 
angular velocity w(wl, w2, w3) such that (VI, w0, (V2, w2) and (Va, w3) are the translatory and 
angular velocities along the x,y, and z directions respectively. The total velocity potential of 
such a motion may be expressed in terms of six unit Kirchhoff potentials: 

(6) 

Denoting the radius vector and the unit normal vector, corresponding to points of the torus, by 
r and n respectively, the Neumann type boundary condition on the toroidal surface implies that 

- (V" n) + ([w x r]" n) (7) 
c~n 

which together with (6) yields 

~4~1 ~4~2 Ock3 
On = nl' On = n2' On = na' 

c~¢, ~¢~ ~¢6 
On - -  y n a  - -  znl '  On = znl -- xn3' On -- xn2 -- Ynx' (8) 

where (nl, n2, n3) are the three components of the normal vector. 
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The six added-mass coefficients 2 i may be expressed in terms of the kinetic energy of the fluid 
[8]. Denoting the added masses, corresponding to gbi, by 2 i, i = 1, 2 . . . .  ,6, one has 

2, = p Is (~ ~r~idn dS, i = 1, 2, . .  ., 6 (9) 

where p is the fluid density and S denotes the surface of the torus. The three values 21, 22 and 23 
correspond to pure translation whereas 24, 25 and 26 correspond to pure rotation. It is clear that 
because of the symmetry properties of the torus, 

22 = 23' "~5 = 26' 24 = 0, (10) 

thus only three finite distinct values exist, namely 21,22 and 26. The three components of the unit 

normal vector n may be expressed as 

1 ~x .  1 ~y.  1 tgz (11) 
hi---- N//~-T c3t' n2=  x//~n t3t' n3=  x / ~  ~ t~t 

which upon substituting in (9) implies that 

f i ' I - "  a s i n h t ° ~ X d f l d "  (12) 
21 = P ~ ~1 cosh t o - cos fl ~ -  

~i"f-" a s i n h t ° O Y d f l d "  
22 = P , ~ ~2 cosh t 0 - cos fl a--~- 

and 

(0y 2~ +~ a sinh % x -~ y -~ d~d?,. (13) 
26 = P ~ ~6 cosh t 0 - cos p 

In the following sections the above integrals are computed and explicit expressions for the 

three distinct added-mass coefficients of the torus are derived. 

3. Added mass for longitudinal axisymmetrie motion 

The potential function tkl,corresponding to translation with unit velocity in the direction of the 
axis of symmetry, satisfies the following boundary condition: 

at  ( ~ l - x ) = 0  on t = z  o (14) 

and an additional requirement that ~b 1 should vanish at infinity, i.e., at t--} 0. In order to solve 
(14) for gb 1 we employ the harmonic representation of x, namely, 

o0 

a sin fl ax/2 cosh t 2 cos fl ~ .4,Q,_ 1/2(cosh t) sin(nil), (15) 
cosh r - cos # n = o 
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where A, are coefficients to be determined from the following useful relation [7]: 

x/2 cosh r - 2 cos fl 

co  

= - -  [Q_ t/z(cosh r) + 2 Z Q.-  lj2( cosh z) cos(nil]. 
n = l  

(16) 

Substituting (16) into (15) renders 

a sin fl 

(2 cosh z - 2 cos il~ 

1 2 ~, nQ,-l:2(c°sh z) sin(nil). 
• c o s / i  = - -  = - a ~ -  x/2eosh z _ 2 r e .= ,  

(17) 

Comparing (15) and (16) in view of(17) yields 

~. = 4n/z~. (18) 

The harmonic representation of qS~ suggested by (14) and (15) is now expressed as 

oO 

~,(r, fl) = __4a x/2 C0s h z - 2cosf l  Y~ A,P,_l/2(cosh r) sin(nil 
n = l  

(19) 

where the coefficients A. are to be found from the solution of 

o0 

O {x/2-cosh. ~ 2 cosfl • [A.P._,/z(cosh r) nO._,:2(cosh v)] sin(nil}l.=~o = 0 
OZ" n= 1 

(20) 

which is obtained by substituting (15) and (19) in the boundary condition (14). By applying the 
orthogonality properties to (20), the following recurrence formula for the coefficients A. is 
obtained: 

anA._ 1 + fl.A. + y.A. + 1 = 6., 

where A o = 0 and 

~n "~- 

n = 1, 2 , . . .  (21) 

- P , -  3/2 (cosh to) 

P , -  1/2 (cosh %) + 2 cosh zoP ._ 1/2 (cosh %) 

- P . + . 2  (cosh %) 

- (n - 1)(~._ a/2(cosh %) + n[Q._ 1/2(cosh %) + 

+ 2 cosh %Q._l:2(cosh %)] - (n + 1)(~.+l:2(cosh %). 

(22) 

(23) 

(24) 

(25) 

Here the dot denotes differentiation with respect to the argument. The inhomogeneous 
second-order linear difference equation (21) yields an explicit solution by using the Thomas 
algorithm [9]. For n < N, where N is an arbitrary integer, we set 0q = ?N = 0; then the solution 
of(21) in a retrogressive form is given by, 

i _ _  t h ¢ ~ _ _  . .  Ak'~-(~k ):k .+1" AN=SN, k N - 1 ,  N 2, . ,2 ,1 (26) 
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and 
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, ,  ~,+~ = , ,  
/~+1 - ~k+l~'~ /~k+l - ~k+l~'k 

k = 1 , 2 , . . . , N -  1 (27) 

t ! 

To find the value of 21, both (15) and (19) are substituted into (12) which, after some 
manipulation, yields 

16w/2 ~ ~'" cos(nil)rift 
21 3 pa3 sinh2 z° ~ nA.P._ 1/2(cosh 30) Jo  . (28) 

. = 1 (cosh r o - cos ~ 

The following relation is easily obtained from (16) 

fo E cos(nfl)dfl (29) 
Q"-a/2(c°sh ~) = (2 c o ~ z  Z 2 c o s  fl)½ 

which by differentiation with respect to the argument renders the following relation: 

f l  cos(nil)rift 
Q._ 1/2(cosh z) = - (2 cosh z - 2 cos fl)~' (30) 

Substituting (30) into (28) yields the desired expression for the longitudinal added-mass 
coefficients 

oo 

21 = 2-t~-3Spaa sinh 2 z o ~ nA,,P,,_ 1/2(cosh zo)Qn_l/2(cosh Zo) (31) 
n=l 

where the coefficients A. are given by the solution of (21). 

4. Added mass  for longitudinal transverse motion 

To calculate the added-mass coefficient for transverse motion in the y direction, it is advan- 
tageous to employ the harmonic representation of y which is taken here in the following form: 

a s i n h r c o s 7  = a x / 2 c o s h r _ 2 c o s f l  Z B.Q~.-x/2(cosh3)cos(nfl)cos~ • (32) 
Y -  c o s h z - c o s f l  

n = O  

Equation (16) implies that the unknown coefficients in (32) are given by 

B o = - 2 / r q  B . = - 4 / n ,  n > l .  (33) 

The above harmonic form of y and the conditions at infinity suggest that the potential ~b 2 may 
be expressed as 

2a/ 
4>2(z, fl, ~) = 2 cosh 3 - 2 cos fl ~. B,P~_ x/2(cosh 3) cos(n~ cos y (34) 

/~ n=O 

where B. are coefficients to be determined. 
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The added-mass coefficients of a torus 7 

Applying the boundary condition on the toroidal surface, 

- - ( ¢ 2 - y ) = 0  on  z - = %  (35) 
& 

yields the following recurrence formula for the coefficients B.: 

~ n B .  - 1 + f l n B .  + 7 . B n +  1 = ~5. n = O, 1 . . . . .  N (36) 

where % = ?N = 0. Here the coefficients a., fin, Y. and 6, are given by 

~. = (1 + gnl)Pn_3/z(cosh "CO), 1"/ > 1, (37) 

fin = -- [P~- U2( c°sh %) + 2 cosh toP, 1_ 1/2(cosh r0)], n > 0, (38) 

• 1 u2(cosh to), (39) 7n = Pn+ 
/ 2 ~,[ 

6n = - 3,2(cosh z-o) + ,,2(cosh z-o)-  e -,.(cosh z-o)-  

- 2 cosh roQ ~_ 1/2(cosh z-o), (40) 

where eij is the Kronecker symbol which is one for i = j and zero otherwise. The Thomas 
algorithm may be used again to solve the linear difference equation (36) for the coefficients B, in 
a manner similar to that described in the previous section. Substituting (32) and (34) into (12) 
renders the following expression for the added-mass coefficient: 

oo 

2 2 ~-- - - 1 6 p a  3 sinh z-o Y. BnP~-1/2( cOsh ro)[c°sh z-oQn-1/2( cOsh Zo) + 
n = 0  

+ 2 sinh 2 roOn - u2(cos h %)] (41) 

where the two dots denote second derivative with respect to the argument. In the derivation of 
(41) both the orthogonality properties of the Legendre functions and the relation (29) have also 
been employed. 

5. Added  m a s s  for rotat ion about  the transverse ax i s  

The added-mass coefficient corresponding to pure rotation about the z axis is given by (13) 
where the unit potential ¢6 is an exterior toroidal harmonic satisfying 

D¢6 Dy DX a 2 cosh r sin fl cos 
- x . . . .  r o, (42) & &-r Y & (cosh r - cos l?)2 , on r 

The boundary condition (42) and the conditions at infinity suggest the following form for the 
Kirchhoffpotential, ¢6: 

co 

¢6(z, fl, y) = a2~/2 cosh r - 2 cos fl ~ C,P~_ 1/2(cosh v) sin(nil) cos y. (43) 
n = l  

Substituting (43) into (42) and employing (16) one obtains the following recurrence formulae for 
the coefficients C,: 
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8 T. Miloh, G. Waisman and D. Weihs 

~.C,_ 1 + fl.C. + ~.C.+ 1 = 6 . ,  n =  1 , 2 , . . . , N ,  (44) 

~1 =)~N =0"  

The above finite difference equation is solved by the Thomas algorithm as given in (26) with the 
understanding that A k is replaced by C k and 

~t, = - p l_ 3/2 (cosh z0), (45) 

ft. = P~-1/2( c°sh ~o) + 2 cosh z0P~_ x/2(cosh Zo), (46) 

?. = - P~ + 1/2 (cosh z0), (47) 

8n 
6. = - - c o t h  zoQ ._ 1/2(cosh %). (48) 

7~ 

Substituting (42) and (43) into (13) and employing (30), one obtains the following expression for 
the rotational added mass: 

oo 

/]'6 = - -  - ~  a5/9 sinh (2Zo) ~ nC.p1,_ 1/2 (cosh Zo)Q,_ 1/2 (cosh Zo). (49) 
n = l  

6. Calculation of 2~ using stream function formulation 

An alternative approach for the calculation of 21 which yields simpler results but is restricted 
to axisymmetric motion alone, is based on the concept of the stream function. 

The axisymmetric Stokes stream function corresponding to a translation of a torus in an 
infinite medium with unit velocity in the direction of the axis of symmetry [10] is 

~,(~,/~) = ~ y ~  + z 2) + 

sinh • ® 
+ Z (2 - e.o)D.P1._ 1/2(cosh z) cos(nil) (50) 

2~/2 cosh ~ - 2 cos fl . = o 

where e o again denotes the Kronecker delta function. The coefficients D. in (50) are given by 

4Q~._l/2(cosh zo) (a 4A ) 
D. = rrP~_x/2(cosh Zo) 2 + 4 n - ~ -  1 " (51) 

Here the coefficient A denotes the value of the stream function on the toroidal surface, namely 

~v(Z o, fl) = A = const. (52) 

The above boundary condition is not sufficient for the determination of the constant A since the 
torus is a stream surface. This is expected, due to the fact that the flow domain is multiply 
connected and as such does not yield a unique solution. To obtain uniqueness we impose the 
condition of a circulation-free flow which provides an additional condition on the stream 
function: 

fo~O~-z ,=~odfl=O. (53) 
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Applying (53) to (50) and (51) yields the following expression for A: 

o0 oo 

A = ( G -  E b .F . ) /Z  d.F., 
n = 0  n = 0  

where 

b. = 4a2Q~_ 1/2(cosh 'co)/l-~P~- ~/2(cosh 'co)], 

d. = 8Q. 1_ l/2(cosh Zo)/[lz(4n 2 - 1)e. 1_ 1/2(cosh 'co)], 
ga  2 

G =  
2 sinh 2 'co ' 

and 

(54) 

(55) 
(56) 

(57) 

F. = (2 - e.o){/5~_ 1/2(cosh zo)Q._ 1/2(cosh Zo) sinh 2 z o + 

+ P~_ 1/z (cosh ro)[cosh zoQ ._ 1/2 (cosh %) + sinh 2 ZoO ._ 1/z (cosh Zo)] }. (58) 

Having found the stream function the kinetic energy of the flow exterior to the torus E may be 
computed from the following relation [8]: 

l ~u* ~u* dl (59) 

where ¢,* denotes the disturbance (vanishing at infinity) part of the stream function in (50) and 
the linearizing factor g,~ is given in (2). The contour integration in (59) is performed over the 
meridional cross-section arc of the torus, namely 

adfl 
dl - (60) 

cosh % - cos fl 

A rather lengthy calculation yields the following expression for the kinetic energy in (59), 

oo 

e.oD.{-~P._ 1/2(cosh 'co[(1 + E = npa sinh % Z 1 1 cosh 2 'CO)~._I/2(COS h .Co ) 
. = 0  

-- cosh 'coQ. + 1/2 (cosh 'co) - cosh. 'coQ.- 3/2 (cosh Zo) ] - 

- sinh 2 %P~_ 1/z(cosh %)Q.-1/2(cosh %)} - 

rcpA ~ e.oD . ~_4 sinh 'co 
2a .=~o ( 2 ~ z  ]) ~ ( 2 n +  ~ Qnl-1/2(c°sh 'co)/6~-1/2(c0sh 'co)-  

- (2n + 1)P~_ 1/2(cosh %) Q._ 1/2(cosh %)J (61) 

and the added-mass coefficient is then given by 

2~ = 2E. (62) 
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It should be noted that (61) and (62) are in fact a closed-form solution for 21 which does not 
require the solution of a tri-diagonal matrix. However, for the numerical computation of 21 
equation (31) was found to be more efficient and economical than (62) as far as computer time for 
a prescribed numerical accuracy was concerned. 

7. Results and discussion 

Equatio"ns (31), (41) and (49) were solved numerically for the three coefficients 21, )~2 and 26, by 
employing the Thomas algorithm mentioned before. The numerical results for the three added 
mass (inertia) coefficients are depicted in Fig. 2 in a dimensionless form where 2 t and 22 are 
normalized by pV r and 2 6 is normalized by pI,. Here V r denotes the volume of the torus and I, 
its moment of inertia about the z axis. The various coefficients given in Fig. 2 were calculated for 
the range 10.1 > d/b > 1.1. In this range the following fourth-order polynomial approxi- 
mations are valid: 

- 1. + 0.02586527(b/d) + 0 .4776554(b /d)  2 
pvT 

- 0.6396613 (b/d) 3 + O.181402392(b/d)  4, (63) 

22 - 0.5 - 0.0323733 (b/d) - 0 .8639560(b /d)  2 
pvT 

+ 1.4155701 (b/d) 3 - 0 .6835380(b /d )  4, (64) 

1.1 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

~ ,  ~- -~- -~  , 

PVT 

, /  

/ 

Ply  

/ 

"K2 
P v  T 

/ _ _ . _ . _ _ - - I  

0.0 
1 2 3 z., 5 6 7 S 9 d / b  

Figure 2. Ratio of generalized added mass to generalized mass ofa  torus for various pure translator)' and rotational 
motions. 
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Plz 
- - = 1 .  - O.04220055(b/d) - 4.3637653(b/d) 2 

+ 5.2447998 (b/d) 3 - 1.8449421(b/d) 4. (65) 

Equations (63) and (65) were obtained by fitting a polynomial through the nodal points given by 
d/b = 1.1, 2.1, 4.1 and 7.1. Similarly equation (64) was obtained by using the points d/b = 1.1, 

3.1, 5.1 and 7.1. 
The parameter b/d is always less than 1; the limit b/d = 0 corresponds to a slender torus 

where the core diameter is small compared with the torus diameter. The other extreme value, 
namely bid = 1 corresponds to the case where the core and the torus radii are equal. Figure 2 
shows that the ratio 2 ~/p V 7. is approximately unity for all b/d and in fact 1. < 21/p V~ < 1.0625. 
In other words, the added mass of a torus, moving normally to the plane of the ring is 
approximately equal to the mass of the displaced fluid. This is reminiscent of the added-mass 
coefficient of a two-dimensional cylinder which is exactly unity. This interesting result can be 
understood by recalling that when b/d ---, 0 the flow in each cross-section is approximately that 
around two circles, i.e. parts of two-dimensional cylinders. For a"fuller" torus, i.e. larger value 

8 P b  a 

24 

2 2  

20  

18' 

16 

14 

12 

I0.  - -  

8 

6. 
/ 

/ 
/ 

/ 

/ 
_ /  

0 I 
1 2 3 4 5 8 7 8 a d t b  

Figure 3. Non-dimensionalcoefficientofaddedmassofatorusforpuretranstationperpendicular totheringplane, vs. 

ratio of ring to core diameters. 
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of b/d, the effect of the finiteness of the core radius is more pronounced and the added-mass 
coefficient increases. These results are in accordance with the asymptotic analysis of Wu and 
Yates [12] who show that the added mass ofa"very slender" torus is 21/pV r = 1 to first order. 
Still another useful approximation for non-slender tori is the following linear relation: 

4pdb ~ - 4.96 + 0.264(b/d), 1/10.1 < b/d < 1/1.1 (66) 

which is also depicted in Figure 3. It should be also mentioned that calculation of 21 by means of 
the stream function method, as given by eq. (62) gave identical results to within accuracy of the 
numerical calculations. The velocity-potential method (31) was however found to be more 
advantageous for the computation of 21 in terms of computer economy than the stream 
function method. 

The added-mass coefficient for a transverse motion in the plane of the ring, namely 22/p Vr, 
was found to be bounded below by approximately 0.35 for b/d--* 1. The upper bound on 22/pV r 
was found to be 0.5 reaching this value asymptotically as bid ~ O, as also shown by eq. (64). 
Again this asymptotic value is in agreement with the approximate results of Wu and Yates 

~k 6 
/..pb s 

24 

/ /  

'° / /  

,o / /  
, / 
' /  
,/ 
0 

1 2 3 /. 5 6 7 8 9 d lb  

Figure 4. Non-dimensionalcoefl~cient ofgeneral izedaddedmass(inert ia)ofatorusrotat ingaroundaringdiameter ,  
vs. ratio of ring to core diameters. 
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The added-mass coefficients of a torus 13 

who found that 22 = 2x/2forveryslendertori .Thefactthattheaddedmassofaslender torusin 
the ring plane is approximately one-half can be understood as only about one-half of the 
sections' velocities are perpendicular to the local section. Again this relation is reminiscent of 
Munk's relation for the added-mass coefficients of slender bodies of revolution. 

The variation of the ratio 26/pl ~ versus d/b, as depicted in Fig. 2, shows that for a "full" torus 
26/pI z is very small and that this ratio increases rapidly to the asymptotic value of 1 for slender 
tori. The "full" torus bid ~ I resembles a sphere for which 26 = 0, which explains the smallness 
of the quantity 26/pI ~. For a very slender torus the interaction between different cross sections 
of the torus may be ignored, implying that the added inertia term 26 is equal to the moment of 
inertia pI~. Still another useful linear approximation for 26 is 

26 = 2.62 --d _ 1.99, 1.1 =< d/b =< 10 (67) 
4pb 5 b 

which is also depicted in Fig. 4. 
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